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• Memory behaviors are found for different entropy production rates in heat conduction.
• The corresponding memory kernels and initial effects decay exponentially.
• The memory behaviors predict a special relation of the thermal relaxation times.
• The global non-equilibrium degree also has exponential memory dependences.
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a b s t r a c t

Based on the relaxation time approximation and first-order expansion, memory behaviors
in heat conduction are found between the macroscopic and Boltzmann–Gibbs–Shannon
(BGS) entropy production rates with exponentially decaying memory kernels. In the
frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics,
thememory dependency on the integrated history is unidirectional, while for the extended
irreversible thermodynamics (EIT) and BGS entropy production rates, the memory depen-
dences are bidirectional and coexist with the linear terms. When macroscopic and micro-
scopic relaxation times satisfy a specific relationship, the entropic memory dependences
will be eliminated. There also exist initial effects in entropic memory behaviors, which
decay exponentially. The second-order term are also discussed, which can be understood
as the global non-equilibrium degree. The effects of the second-order term are consisted of
three parts:memory dependency, initial value and linear term. The correspondingmemory
kernels are still exponential and the initial effects of the global non-equilibriumdegree also
decay exponentially.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a fundamental concept in thermodynamics, entropy is widely applied to macroscopic irreversible phenomena.
The principle of entropy increase [1–3] in thermodynamics provides the tendency for irreversible phenomena, i.e., heat
conduction, but it cannot describe the non-equilibrium processes in sufficient details. For instance, Clausius statement of
the second law [4,5] only governs the direction of heat transfer between two different temperatures, while the details is not
given, i.e., the transport rate. Thus, supplemental constitutive models are needed for complete descriptions and predictions.
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Themacroscopic description of heat conduction is usually proposed by the constitutive modeling between the heat flux and
temperature distributions, and the most classical constitutive relation is Fourier’s law,

q + λ∇T = 0, (1)

where q is the heat flux, T is the temperature and λ is the thermal conductivity. Based on local-equilibrium macroscopic
quantities, Fourier’s law is discussed in the framework of classical irreversible thermodynamics (CIT) [6–8]. The local CIT
entropy SCIT and entropy flux JS are defined as follows (pure heat conduction)

SCIT =

∫
ρcV

dT
T

, (2a)

JS =
q
T

, (2b)

where ρ is the mass density and cV is the specific heat. The local CIT entropy production rate is then derived from the
following entropy balance equation

σCIT =
∂SCIT
∂t

+ ∇ · JS = q · ∇

(
1
T

)
. (3)

From Eq. (3), it is found that the positive thermal conductivity can always guarantee a non-negative form for the CIT entropy
production rate. As a phenomenological model, Fourier’s law is proved by numerous experiments and widely applied to
engineering. However, its parabolic governing equation predicts an infinite propagation speed of thermal disturbance,
which seems unphysical for neglecting the time needed for the acceleration of heat flow [9]. For improvement, a relaxation
between the temperature gradient and heat flux is introduced into the constitutive relation in the Cattaneo–Vernotte (CV)
model [10,11]

q + τCV
∂q
∂t

+ λ∇T = 0, (4)

where τCV is the thermal relaxation timeof heat flux. Eq. (4) leads to a hyperbolic governing equation, andwave-like transport
with a finite speed arises from the hyperbolic heat conduction. It should be noted that the infinite transport speed of Fourier
heat conduction only exists under the condition of constant physical properties, which results in a linear parabolic equation.
For the non-linear cases, i.e., λ = λ (T ) ∝ Tα(α ̸= 0 is a constant), Fourier’s law can also predict finite transport speed and
in fast (superfast) diffusion (−2 < α < 0) [12], there even exist hyperbolic or wave-like characteristics either, for instance,
the traveling wave solution T (x, t) = 8 (x − ct) + 9 (x + ct) with c denoting the wave velocity. Even so, non-Fourier
constitutive modeling is still necessary because non-linear Fourier heat conduction is not as well-posed as the linear case.
The existence of solutions could be dimensional dependent and for α < −1, there are no physically meaningful solutions
in multi-dimensional problems [12]. Accordingly, the generalizations like introducing thermal relaxation may provide a
perspective to overcome these defects of Fourier’s law. In the spirit of thermal relaxation, hyperbolic heat conduction has
been developed into different types [13–16]. Many of these heat conductionmodels have been summarized and understood
as the following memory behaviors between the temperature gradient and heat flux [17,18]

q (x, t) = −

∫ t

−∞

Q (t − η) ∇T (x, η) dη, (5)

where Q (t − η) is the memory kernel (or relaxation function). For most hyperbolic models including the CV model, the
memory kernels are exponential. The power-law type Q (t) ∝ t−γ (γ is a positive constant) can also be applied, which will
give rise to fractional differential operators [19].

One of the main arguments about the hyperbolic CV model is that the local CIT entropy generation could be negative
[20–22]. Non-equilibrium effects have been considered to cause this unphysical behavior in the framework of extended
irreversible thermodynamics (EIT). To reflect the non-equilibriumeffects in EIT entropy, heat flux is introduced as an intrinsic
variable [8,23–25]

SCV = SCIT −
τCV

2λT 2 q · q. (6)

The corresponding entropy flux is still Eq. (2b), and then a non-negative form of the EIT entropy production rate will be
guaranteed σCV =

q·q
λT2

. At themicroscopic level, foundation of statisticalmechanics can be established for Eqs. (5) and (2b) by
Grad’smethod [8], and hencewe assume that Eq. (2b) can provide a sufficiently accurate estimation for the local entropy flux.
In statistical mechanics, the Boltzmann–Gibbs–Shannon (BGS) entropy [26,27] is the most widely used entropic definition

SBGS = −kB
∑

f ln f , (7)

where kB is the Boltzmann’s constant,
∑

is the summation (or integral) operator in the phase space and f denotes the
one-particle distribution function containing at least spatial and temporal variables. Besides spatial and temporal variables,
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there would also exist other variables, i.e., the particle velocity. The extensive BGS statistical mechanics is not applicable to
the cases with longmemory or long-range interactions, and in order to overcome these limitations, non-extensive statistical
mechanics are proposed [28–30]. In thiswork,memory relations similar to Eq. (5) between the BGS andmacroscopic entropy
production rates are established based on the relaxation time approximation [31,32]. It is shown that the BGS and EIT
entropy production rates have similar memory dependences on the CIT entropy production rates, which could provide an
understanding for relations between macroscopic and statistical mechanics entropic definitions. Similar to the heat flux in
non-Fourier heat conduction, the BGS (or EIT) entropy production rate will also be effected by the history of macroscopic
quantities. The EIT entropic structure, which considers the non-equilibrium effects, is equivalent to introducing a memory
modification to give more accurate macroscopic estimations for the statistical entropic definitions. What is more, when
macroscopic and microscopic relaxation times satisfy a specific relationship, extended irreversible thermodynamics and
BGS statistical mechanics will lead to similar temporal behaviors for entropic definitions.

2. First-order approximation

The local-equilibrium temperature in Eq. (2a) corresponds an equilibrium distribution f0, and then the local-equilibrium
CIT entropy can be rewritten by BGS statistical mechanics

SCIT = −kB
∑

f0 ln f0. (8)

The difference between the BGS and CIT entropies is given as follows

SBGS − SCIT = kB
∑

(f0 ln f0 − f ln f ) . (9)

For the existence of macroscopic descriptions, the distribution function should be close to the equilibrium distribution with
sufficiently small |f0 − f |, and hence the following first-order expansion can be taken

SBGS − SCIT = kB
∑

(f0 − f ) (ln f + 1) + kB
∑

o (f0 − f ) . (10)

Consider the Boltzmann equation without external force field
∂ f
∂t

+ v · ∇f = C (f , f ) , (11a)

where C (f , f ) is the collision term and v is the particle velocity. One commonly usedmodel for C (f , f ) in transport processes
is the relaxation time approximation [31,32] C (f , f ) =

f0−f
τB

with τB denoting the relaxation time. Eq. (11a) and the relaxation
time approximation will give rise to the following entropy production rate

σBGS = −kB
∑

C (f , f ) ln f = −kB
∑(

f0 − f
τB

)
ln f , (11b)

and Eq. (10) can subsequently be rewritten as

SBGS − SCIT = −τBσBGS + kB
∑

o (f0 − f ) . (12)

Substituting Eq. (12) into the following entropy balance equation
∂SBGS
∂t

= −∇ · JS + σBGS, (13)

and we can obtain

σCIT = σBGS + τB
∂σBGS

∂t
. (14)

Eq. (14) shows a relaxation relation between the CIT andBGS entropy generations,which is similar to the constitutive relation
in the CV model. Like the heat flux depended on the integrated history of the temperature gradient [17,18], there is also a
memory dependence for the BGS entropy production rate

σBGS (x, t) =
1
τB

∫ t

−∞

σCIT (x, η) exp
(

−
t − η

τB

)
dη. (15)

It is shown that σBGS is not determined by the instantaneous values of σCIT but its integrated history, which exhibits a
memory behavior with an exponentially decaying memory kernel. For the convergence of the above generalized integral,
σCIT (x, −∞) = 0 must be satisfied. When the lower limit of the integral is zero, the initial CIT entropy production rate will
also have an effect on the memory dependence. Generally speaking, the time domains of most heat conduction problems
are [0, +∞) and we first neglect the initial effects in this section. As the lower limit of the integral is modified into zero, the
memory dependence without the initial effects is given by

σBGS (x, t) =
1
τB

∫ t

0
σCIT (x, η) exp

(
−

t − η

τB

)
dη =

1
τB

σCIT ∗ exp
(

−
t
τB

)
, (16)
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where ∗ is the time convolution operation. The exponentially decaying convolution kernel means that the weights of σCIT at
different moments are unequal. For σBGS at a fixed moment t0, the closer that t is to t0, the more weight that σCIT (x, t) has.
Thus, the entropic memory of a fixed moment is decreasing over time.

The BGS entropy production rate is non-negative while according to Eq. (14), σCIT could be negative as σBGS decays rapidly
enough. The critical situation is σBGS + τB

∂σBGS
∂t = 0, which corresponds an exponential decay of σBGS

σBGS (x, t) = σBGS (x, 0) exp
(

−
t
τB

)
. (17)

In this case,σCIT ≡ 0with the irreversible heat conductionprocesses happening and therefore, the CIT entropy generation can
no longer describe the irreversibility of heat conduction. Accordingly, the exponential decay in Eq. (17) might correspond to
the maximum decay rate for theoretical applicability of classical irreversible thermodynamics. If a macroscopic description
of heat conduction predicts σCIT decaying faster than Eq. (17), classical irreversible thermodynamics would not be applicable
for this problem.

From Eqs. (6) and (12), the first-order relation between the BGS and EIT entropies can be obtained as follows

SBGS − SCV = −τBσBGS +
1
2
τCVσCV + kB

∑
o (f0 − f ) . (18)

Then, the fist-order relation between the three entropies is derived as

σCIT = σBGS + τB
∂σBGS

∂t
= σCV +

τCV

2
∂σCV

∂t
, (19)

and when the initial entropy generation is neglected, we have

σCV =
2

τCV
σCIT ∗ exp

(
−

2t
τCV

)
, (20a)

σBGS =
τCV

2τB
σCV +

(
1 −

τCV

2τB

)
1
τB

σCV ∗ exp
(

−
t
τB

)
, (20b)

σCV =
2τB
τCV

σBGS +

(
1 −

2τB
τCV

)
2

τCV
σBGS ∗ exp

(
−

2t
τCV

)
. (20c)

Similar to the Eq. (16), σCV also indicates a unidirectionalmemory dependence on the integrated history of σCIT with an expo-
nential entropic memory kernel exp

(
−

2t
τCV

)
. Like the non-Fourier constitutive relations between the temperature gradient

and heat flux, the memory behavior between the CIT entropy production rate σCIT and its macroscopic phenomenological
generalization σG could also be summarized as σG = Qe ∗ σCIT with Qe denoting the entropic memory kernel. Then, different
generalizations of the CIT entropic forms can also be given through different choices ofQe. Different the relation between σCIT
and σBGS (or σCV ), Eqs. (20b) and (20c) show that the memory dependences between σCV and σBGS are bidirectional. What is
more, we can also find that the memory dependences coexist with the linear terms in Eqs. (20b) and (20c). When τCV = 2τB,
the entropic memory terms even disappear and the difference between σCV and σBGS will be high-order term of |f − f0|.
Thus, the EIT entropic structure can be understood as an improvement of the CIT entropy by eliminating partial memory
dependence between σCIT and σBGS , and the memory modification will provide more accurate macroscopic estimations for
the statistical entropic definitions.

3. Initial effects and second-order term

When the initial effects are taken account of, the above entropic memory relations will change into the following forms:

σBGS =
1
τB

σCIT ∗ exp
(

−
t
τB

)
+ σBGS |t=0 exp

(
−

t
τB

)
, (21a)

σCV =
2

τCV
σCIT ∗ exp

(
−

2t
τCV

)
+ σCV |t=0 exp

(
−

2t
τCV

)
, (21b)

σBGS =
τCV

2τB
σCV +

(
1 −

τCV

2τB

)
1
τB

σCV ∗ exp
(

−
t
τB

)
+

(
σBGS −

τCVσCV

2τB

)⏐⏐⏐⏐
t=0

exp
(

−
t
τB

)
, (21c)

σCV =
2τB
τCV

σBGS +

(
1 −

2τB
τCV

)
2

τCV
σBGS ∗ exp

(
−

2t
τCV

)
+

(
σCV −

2τBσBGS

τCV

)⏐⏐⏐⏐
t=0

exp
(

−
2t
τCV

)
. (21d)

It is shown that the initial effects decay exponentially and accordingly, the initial effects can be neglected after a sufficiently
long time t ≫ τB,

1
2τCV . For the entropic memory relations between σCIT and σBGS (or σCV ), the initial effects are only
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determined by the initial values σBGS |t=0 (or σCV |t=0), while in the relations between σCV and σBGS , both of their initial values
appear. When τCV = 2τB, the entropic memory dependences disappear and there only exists the initial term

σBGS − σCV = (σBGS − σCV )|t=0 exp
(

−
t
τB

)
. (22)

Therefore, if the phenomenological thermal relaxation time τCV equals to 2τB, σCV can provide an accurate first-order
estimation for σBGS after sufficiently long time.

The above approximations are based on the first-order term of (f0 − f ) in Eq. (9), and the second-order term (f0 − f )2

will be discussed in the following part. With higher-order terms neglected, the second-order approximations between the
BGS and macroscopic entropies are given by

SBGS − SCIT = −τBσBGS + kB
∑ (f0 − f )2

2f
+ kB

∑
o(f0 − f )2, (23a)

SBGS − SCV = −τBσBGS +
1
2
τCVσCV + kB

∑ (f0 − f )2

2f
+ kB

∑
o(f0 − f )2. (23b)

By introducing the relative entropy or Kullback–Leibler (KL) divergence [33] between f0 and f , the second-order term∑ (f0−f )2

2f can be rewritten as

DKL = DKL (f0 ||f ) =

∑
f0 ln

f0
f

=

∑[
(f − f0)2

2f
+ o(f0 − f )2

]
, (24)

and then we have

SBGS − SCIT = −τBσBGS + kBDKL + kB
∑

o(f0 − f )2, (25a)

SBGS − SCV = −τBσBGS +
1
2
τCVσCV + kBDKL + kB

∑
o(f0 − f )2. (25b)

As an information-geometrical conceptmeasuring the distance betweendistributions, the KL divergenceDKL provides amore
specific understanding and meaning of the second-order term, the global deviation between the distribution function and
its corresponding equilibrium distribution. Briefly speaking, DKL can be considered as the global non-equilibrium degree,
which is one-order smaller than τBσBGS . Substituting Eqs. (25a) and (25b) into the entropy balance equation gives

σCIT = σBGS + τB
∂σBGS

∂t
− kB

∂DKL

∂t
= σCV +

τCV

2
∂σCV

∂t
, (26)

and the following memory relationships can be subsequently obtained

σBGS =
1
τB

(
σCIT −

kBDKL

τB

)
∗ exp

(
−

t
τB

)
+

(
σBGS −

kBDKL

τB

)⏐⏐⏐⏐
t=0

exp
(

−
t
τB

)
+

kBDKL

τB
, (27a)

σBGS =
τCV

2τB
σCV +

1
τB

[(
1 −

τCV

2τB

)
σCV −

kBDKL

τB

]
∗ exp

(
−

t
τB

)
+

(
σBGS −

τCVσCV

2τB
−

kBDKL

τB

)⏐⏐⏐⏐
t=0

exp
(

−
t
τB

)
+

kBDKL

τB
, (27b)

σCV =
2τB
τCV

σBGS +
2

τCV

[(
1 −

2τB
τCV

)
σBGS −

2kBDKL

τCV

]
∗ exp

(
−

2t
τCV

)
+

(
σCV −

2τBσBGS

τCV
−

2kBDKL

τCV

)⏐⏐⏐⏐
t=0

exp
(

−
2t
τCV

)
+

2kBDKL

τCV
. (27c)

From the above equations, it is found that the effects of the global non-equilibrium degree DKL are consisted of three parts:
memory dependency, initial value and linear term. Similar to the first-order cases, the memory behaviors of DKL are also
expressed in convolution forms with exponential memory kernels determined by the relaxation times, whose initial effects
are exponentially decaying either. Although kBDKL is one-order smaller than τBσBGS , kB

⏐⏐⏐ ∂DKL
∂t

⏐⏐⏐might not bemuch smaller than

τB

⏐⏐⏐ ∂σBGS
∂t

⏐⏐⏐. A simple case is taken as an example, where τBσBGS = C1 kBDKL = C2 sinωt ( C2C1 ≪ 1, ω, C1 and C2 are constants).

Obviously, kBDKL ≪ τBσBGS but kB
⏐⏐⏐ ∂DKL

∂t

⏐⏐⏐ > τB

⏐⏐⏐ ∂σBGS
∂t

⏐⏐⏐, and for sufficiently large ω, kB
∂DKL
∂t could even play a dominant role in

Eq. (26). Therefore, the second-order term could also result in negative σCIT as DKL increases fast enough, which gives another



110 S. Li, B. Cao / Physica A 492 (2018) 105–112

limitation for the theoretical applicability of classical irreversible thermodynamics. Analogously, τCV = 2τB is also a special
case which can simplify the Eq. (27b) into:

σBGS − σCV −
kBDKL

τB
=

(
σBGS − σCV −

kBDKL

τB

)⏐⏐⏐⏐
t=0

exp
(

−
t
τB

)
−

kBDKL

τ 2
B

∗ exp
(

−
t
τB

)
. (28)

In this case, the entropic memory behaviors are eliminated but thememory of the global non-equilibrium degree still exists.
In the above discussion, τCV = 2τB is found as a special relation andwewill try to explain this particularity in the following

discussion. For the microscopic relaxation time approximation, a well-known exponential decay can be derived from the
Boltzmann equation under the condition of ∇f = 0 (|f − f0| ≪ f0)

f − f0
(f − f0)|t=0

= exp
(

−
t
τB

)
. (29)

Consider the two following functions of χ

φ (χ) = (f0 + χ) ln (f0 + χ) , (30a)

ϕ (χ) =

(
f0 + e−

t
τB χ

)
ln

(
f0 + e−

t
τB χ

)
, (30b)

and by setting χ = (f − f0)|t=0, we have

(f0 ln f0 − f ln f )
(f0 ln f0 − f ln f )|t=0

=
ϕ (0) − ϕ (χ)

φ (0) − φ (χ)
. (31)

According to the differential mean value theorem, there is a ε ∈ (− |χ | , |χ |) satisfying

ϕ (0) − ϕ (χ)

φ (0) − φ (χ)
=

g ′ (ε)

h′ (ε)
= e−

t
τB

[
1 + ln

(
f0 + e−

t
τB ε

)]
1 + ln (f0 + ε)

∼= exp
(

−
t
τB

)
. (32)

Then, an exponential decay for the deviation between the BGS and CIT entropies can be obtained as follows

SBGS − SCIT
(SBGS − SCIT )|t=0

=

∑
(f0 ln f0 − f ln f )∑

(f0 ln f0 − f ln f )|t=0

∼= exp
(

−
t
τB

)
. (33)

Similarly, at the macroscopic level, the deviation between the EIT and CIT entropies also decays exponentially under the
condition of ∇T = 0

SCV − SCIT
(SCV − SCIT )|t=0

= exp
(

−
2t
τCV

)
. (34)

By comparing the two exponential decays, we find that the BGS and EIT entropies predict a same decaying behavior of the
deviation from the CIT entropy. Thus, when the macroscopic and microscopic relaxation times satisfy τCV = 2τB, extended
irreversible thermodynamics and BGS statisticalmechanicswill give similar temporal behaviors. However, it should be noted
that this similarity of temporal behaviors only exists for entropy and entropy generation, which respectively correspond to
the zero-order and first-order terms. This is because Eq. (28) shows that the memory dependence of DKL is not eliminated
when τCV = 2τB, and therefore, the similarity no longer holds for the global non-equilibrium degree.

4. Conclusions

Based on the relaxation time approximation and first-order expansion, unidirectional memory dependences on the
integrated history of the CIT entropy production rate are established for the BGS entropy production rate. Similar memory
behaviors are also found between the BGS and EIT entropy production rates, which are bidirectional and coexist with the
linear terms. The entropic memory kernels decay exponentially and when τCV = 2τB, the memory relation between σCV
and σBGS will disappear. It means that the memory modification in EIT can give more accurate macroscopic estimations
of the statistical entropic definitions. The memory behaviors provide an understanding of the EIT entropic structure, an
improvement of the CIT entropy by eliminating partial memory dependence. Similar to the non-Fourier constitutive models
between the temperature gradient and heat flux, the memory dependence between the CIT entropy production rate and its
macroscopic phenomenological generalization could also be summarized as σG = Qe ∗σCIT , and different generalizations can
be given through different choices of the entropic memory kernels. In this work, the entropic memory kernels are found as
an exponential type, whichwill result in integer-order derivatives. Recently, fractional-order derivatives are also introduced
for modeling the long memory behaviors in heat conduction [34,35], which arise from the power-law memory kernels. It
seems that the entropic memory kernel could also be chosen as power-law functions, which provides a new perspective for
modeling phenomenological entropy.

The initial effects of the entropy production rates, which correspond to the first-order term, also decay exponentially.
The second-order term can be understood as the global non-equilibrium degree. The effects of the global non-equilibrium
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degree are consisted of three parts: memory dependency, initial value and linear term. The memory behaviors of DKL are
also expressed in the convolution formwith exponential memory kernels determined by the relaxation times, and its initial
effects decay exponentially either. τCV = 2τB is found as a special case, where extended irreversible thermodynamics and
BGS statistical mechanics predict similar temporal behaviors for entropy and entropy generation. This similarity of temporal
behaviors will not exist for the global non-equilibrium degree because the memory dependence of the second-order term is
not eliminated.

The Cattaneo–Vernotte (CV) model and Fourier’s law are phenomenological models on the macroscopic level [36], while
the Boltzmann equation is a universal law on the microscopic level, which corresponds to the BGS entropy. Through
appropriate assumptions, i.e., the relaxation time approximation and mathematical form of the distribution function, the
two phenomenological models can be derived from the Boltzmann equation. In practical engineering, solving the Boltzmann
equation would usually be complicated and difficult. Thus, we need phenomenological models to give approximate estima-
tions for heat conduction. The phenomenological heat conduction models may correspond to entropies on the different
levels, which would predict different entropic memory (or relaxation) behaviors. This work may provide a perspective to
reflect the deviations between the Boltzmann equation and phenomenological models by comparing their entropic memory
(or relaxation) behaviors. For Fourier heat conduction, where the CIT entropy are usually applied, the constitutive relation
between the heat flux and temperature gradient is instantaneous. The Boltzmann equation and CVmodel, which respectively
correspond to the BGS and EIT entropies, predictmemory dependency on the relation between the heat flux and temperature
gradient. BGS statistical mechanics shows an entropic memory dependency on the CIT entropy, and the CV model paired
with the EIT entropy will also give arise to similar memory behaviors. It exhibits that heat conduction with relaxation
will be paired with entropic memory, and different memory kernels would reflect different relaxation behaviors in heat
conduction. Then, the heat conduction modeling through introducing relaxation between the heat flux and temperature
gradient can also be considered as an approximate description for the entropic memory in BGS statistical mechanics. If a
phenomenological heat conductionmodel predicts an accurate approximation of the entropic memory, this model might be
considered as an accurate approximation of heat conduction obeying the Boltzmann equation. It should be emphasized that
the above relations between relaxations on the three levels only hold in the near-equilibrium region |f0 − f | ≪ f0, otherwise
the similarity in entropic relaxation may not exist.
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